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100-Driver: A Large-scale, Diverse Dataset for
Distracted Driver Classification

Jing Wang, Wenjing Li, Fang Li, Jun Zhang, Zhongcheng Wu, Zhun Zhong, Nicu Sebe

Abstract—Distracted driver classification (DDC) plays an im-
portant role in ensuring driving safety. Although many datasets
are introduced to support the study of DDC, most of them are
small in data size and are short of diversity in environmental
variations. This largely limits the development of DDC since
many practical problems such as the cross-modality setting
cannot be fully studied. In this paper, we introduce 100-Driver,
a large-scale, diverse posture-based distracted diver dataset,
with more than 470K images taken by 4 cameras observing
100 drivers over 79 hours from 5 vehicles. 100-Driver involves
different types of variations that closely meet the real-world
applications, including changes in the vehicle, person, camera
view, lighting and modality. We provide a detailed analysis of 100-
Driver and present 4 settings for investigating practical problems
of DDC, including the traditional setting without domain shift
and 3 challenging settings (i.e., cross-modality, cross-view, and
cross-vehicle) with domain shifts. We conduct comprehensive
experiments on these 4 settings with state-the-of-art techniques
and show several insights to the future study of DDC. Our 100-
Driver will be publicly available offering new opportunities to
advance the development of DDC. The 100-driver dataset, source
code and evaluation protocols will be available at https://100-
driver.github.io

Index Terms—Distracted driver dataset, Large-sacle, Cross-
modality, Cross-view, Cross-vehicle.

I. INTRODUCTION

CArs bring great convenience to humans and have become
an indispensable part of daily travel. However, there

are two sides to every door. Road traffic injuries became a
growing concern that is estimated to be the seventh leading
cause of death globally by 2030 [1]. According to statistics of
the National Highway Traffic Safety Administration, nearly
25% of traffic accidents are caused by distracted drivers.
Distracted driver behavior is any activity that takes driver’s
attention away from the task of safe driving, such as, using
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cellphone, eating, talking to people, to name a new. Although
some surveillance systems on roads can capture and identify
certain types of distracted driver behavior, this can only be
used as a punishment but it is not a precaution. In addition,
the identification accuracy and identified types of distracted
driver behavior are limited due to low image quality. Hence, it
is important to develop an onboard monitoring system to alert
drivers who are inattentive, greatly preventing traffic crashes.

Over the past decades, many researches were introduced
towards driving safety. We should notice that, researchers in
the naturalistic driving study (NDS) have provided large-scale
datasets that include driving image data, such as SHRP2 [2],
400-car [3] and etc. However, the purpose of NDS is very
different to DDC. NDS aims to understand driver and vehicle
behavior by off-the-shell data while DDC focuses on recognize
dangerous behaviors in real time. In addition, these NDS
datasets can hardly be used for DDC tasks since most of them
are not publicly available and the image quality is limited.
We thus regard NDS and DDC as different tasks and do not
directly compare with the datasets of them. For DDC task,
lots of techniques [4]–[15] were studied where posture-based
distracted driver classification (DDC) has shown superiority
in both terms of accuracy and efficiency [16]–[19]. Therefore,
a number of driver-posture-based datasets [20]–[23] were
proposed to support the study of DDC. However, these datasets
are limited in one or more significant aspects, including scene
variation, comprehensiveness of categories, and the number
of drivers. To be specific, as listed in Table I, most of them
are captured from a single camera view and only consider the
daytime scene. In addition, the existing datasets are collected
from one vehicle. These features largely limit the scene
variations of existing datasets. On the other hand, most of the
existing datasets consist of less than 10 distraction behaviors
and less than 50 drivers. In real-world applications, the systems
are deployed in different environments and undoubtedly will
encounter various scenes, drivers and behaviors. Thus, the
insufficiency of existing datasets hampers the application to
real-world scenarios and as such it is essential to build a new
dataset supporting the study of DDC.

In this paper, we introduce a large-scale, diverse dataset for
DDC, which is simply named 100-Driver due to a collection
with 100 drivers. We make the four following contributions:

• The largest public dataset. 100-Driver contains more
than 470K samples recorded over 79 hours. 100-Driver
is the largest DDC dataset, which is 1.6× larger than the
previous largest dataset (3MDAD [23]). It will also be
publicly available.

• The most diverse dataset. 100-Driver is captured by 4

https://100-driver.github.io
https://100-driver.github.io


JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, MARCH 2022 2

Driver

Vehicle

View

Resolution

Class

Size

StateFarm

Driver

Vehicle

View

Resolution

Class

Size

3MDAD
Driver

Vehicle

View

Resolution

Class

Size

100-Driver

100 Drivers

5 Vehicles

2 Modalities

22 Classes

Left Front Right Side

RGB NIR

>470K Images

Appearance
Variations

Sedan Van SUV SUV

4 Views

>79 Hours

Sedan

100-Driver 
Dataset

Driver

Vehicle

View

Resolution

Class

Size

EBDD

Driver

Vehicle

View

Resolution

Class

Size

dBehaviourMD

Driver

Vehicle

View

Resolution

Class

Size

AUC

Fig. 1: Left: The specification of the proposed 100-Driver for distracted driver classification. Right: The comparisons of different datasets.

TABLE I: Comparisons of our 100-Driver with existing posture-based distracted driver classification datasets. ∗: only data of 5 divers are
released. §: the number of drivers in day/night, and some drivers are appeared in both day and night. -: video dataset that has many highly
similar frames and can not be compared with image datasets fairly in term of data size. N/A: corresponding information is not provided.

SEU-DP StateFarm AUC EBDD 3MDAD dBehaviourMD Turky-DD 100-Driver
Year 2012 2016 2017 2018 2019 2020 2020 2022

Publicly available ✗ ✓ ✓ ✓ ✓ ✓∗ ✗ ✓
# Male/Female 10/10 N/A 22/9 13/0 38/12 27/10 N/A 70/30
# Day/Night § N/A 26/0 31/0 13/0 40/19 N/A N/A 65/52

# Vehicles N/A N/A 1 1 1 1 1 5
# Classes 4 10 10 4 16 13 10 22
# Cameras 1 1 2 1 2 1 1 4

Video duration N/A N/A N/A 0.67 h 6.12 h 51 h N/A ∼ 79.34 h
Size N/A 22,424 17,310 - 287,048 - 137,093 470,208

Avg. # Img/Behaviour N/A 86.24 55.8 - 152.04 - N/A 34.03
Resolution 640×480 640×480 1920 × 1080 854 ×480 640×480 1920 × 1080 640 × 480 1920 × 1080

camera views observing 100 drivers from 5 vehicles. In
addition, the samples are captured in both daytime and
nighttime and are annotated across 22 categories. 100-
Driver is more diverse than existing datasets and is more
in line with the real-world applications.

• New settings. Thanks to the large size and diversity of
100-Driver, we introduce four settings for DDC, includ-
ing one traditional setting without domain bias, and three
challenging but practical settings with domain bias. The
latter are cross-modality, cross-view and cross-vehicles
settings that explicitly consider the scene variations in
real-world applications.

• Comprehensive experimental analysis and new in-
sights. We conducted extensive experiments on 100-
Driver with state-of-the-art techniques. We validate the
effectiveness of each technique on the introduced settings
and reveal valuable insights to the study of DDC.

We hope our 100-Driver can encourage researchers in future
to consider more challenging but practical problems in DDC
and we believe the studies on 100-Driver have great potential
to facilitate the development of DDC towards safe driving.

II. RELATED WORKS

In this section, we introduce the datasets for driver behav-
ior analysis, including naturalistic driving study (NDS) and
distracted driver classification (DDC) datasets. Although NDS
and distracted driver classification (DDC) are both designed
for improving the driving safety, they are different in terms
of the objective. The goal of NDS is to understand driver and
vehicle behavior by quantitative analysis based on off-the-shell
data, such as “the characteristic of crashes and indent” [24],
“the characteristic of driver inattention” [3] and etc. The
conclusions analyzed by NDS can be used to guide the design
of DDC. Instead, the purpose of DDC is to recognize the
already-known dangerous behaviors in an online way to ensure
the real-time driving safety.

A. Naturalistic Driving Study (NDS) Datasets

Naturalistic Driving Study (NDS) has made significant
progress along with the emergence of the large-scale NDS
datasets [2], [3], [24]–[26]. In 2006, the first large-scale NDS
dataset 100-car [24] is conducted where 100 vehicles and
109 primary participants are involved, and multi-resource data
like camera, GPS, and radar is captured. The video data in
100-car are captured from two in-car cameras and two out-
car cameras which are annotated with specific events such as
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Fig. 2: Statistics of 100-Driver dataset.

crashes, and near crashes with the purpose of understanding
the driver and vehicle behavior in extreme circumstances.
Through quantitative analysis, 100-car provides us with lots
of important findings, for example, “Almost 80 percent of all
crashes and 65 percent of all near-crashes involved the driver
looking away from the forward roadway”, “Drowsiness is a
contributing factor in 12 percent of all crashes and 10 percent
of near-crashes ”. Subsequent datasets like UYANIK [26],
SHRP2 [2], 400-car [3], UDRIVE [25] may be larger in
terms of the number of divers or vehicles, or more diverse
in road situation and data modality, their goal is still similar
to 100-car. For example, the goal of the 400-car [3] dataset is
to understand the drivers behaviors in normal, impaired and
safety-critical situations while UDRIVE [25] aims to obtain a
better understanding of drivers’ engagement in secondary task
activities.

However, most of existing NDS datasets can not be directly
utilized for DDC. (a) First and foremost, existing NDS datasets
are not publicly available (especially video data) for academic
study [2], [3]. (b) The images quality in most NDS datasets
is pretty low [2] because they are often highly compressed to
meet the requirement of the storage of large amount of data.
Additionally, the videos in NDS datasets often have a very
low frame rate (e.g., 10 FPS), resulting in the lost of important
frames. These two factors will increase the difficulty of using
NDS datasets for DDC.

B. Distracted Driver Classification (DDC) Datasets

Considering the requirements of both effectiveness and effi-
ciency in real-world applications, although driver physiologi-
cal information [27]–[29] or vehicle kinematic signatures [30],
[31] can be used for DDC, recognizing distracted drivers in a

vision manner is a better choice [24]. The vision-based DDC
datasets can be divided into two categories, body-part-based
and posture-based datasets.

1) Body-part-based DDC datasets: Body-part-based DDC
datasets extract drivers’ head [32]–[35], facial (e.g., face [7],
[36], [37], eyes [8], [9], and mouth [38], [39]), and hand [6],
[40] features to recognize several specific distraction behav-
iors. To be specific, driver head datasets such as DriveA-
Head [32], LISA-P [35], CoHMEt [34] aim to monitor driver
awareness by estimating the head position and rotations like
yaw, roll, and pitch. Driver eyes datasets [8], [9] are to
recognize the behavior of fatigue, sleepiness, and inattention
based on the driver’s eye states such as the eye blinking
frequency and eye closure duration. Similarly, driver mouth
datasets [38], [39] are conducted to determine the yawning
behavior by analyzing the driver’s mouth opening level.

Despite their low computational cost [41], the models
trained on body-part-based DDC datasets have two limitations.
First, they are sensitive to scene variation. For example, the
models trained on the facial datasets will come to nothing if
the driver just wears a mask or sunglasses [41]. Second, the
models trained on body-part-based DDC datasets can recog-
nize limited distracted behaviors. These two limitations largely
restrict their subsequent real-world applications. Compared to
body-part-based DDC datasets, posture-based DDC datasets
try to capture the distraction behaviors by the driver’s whole
posture, which are more robust to variations and cover a more
comprehensive set of distractions [20], [21], [23].

2) Posture-based DDC datasets: In recent years, a number
of posture-based datasets has been released for distracted
driver classification (DDC). Although SEU-UP is the first
dataset for DDC, it is not publicly available and only indicates
the driver information. Several years latter, StateFarm [20]
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and AUC [21] are introduced to support the study of DDC,
which however are limited in the data size. Recently, two
large-scale datasets, 3MDAD [23] and Turky-DD [42], are
proposed, which have more than 287K and 137K images,
respectively. Nevertheless, both of them have low image
quality and Turky-DD is not publicly available. The above
five datasets are image-based datasets. There are two video-
based datasets presented in the community, EBDD [43] and
dBehaviourMD [22]. Although dBehaviourMD includes more
than 1M images, it is indeed not as diverse as 3MDAD and
Turkey-DD since there are many highly similar frames in it.
In addition, dBehaviourMD only releases a small portion of
the data (5 of 37 drivers), largely reducing the data size of
it. Despite the wide use of the above datasets, all of them
are relatively limited in data diversity. This leads them still
far from the real-world scenarios and hinders the investigation
of DDC. To this end, we build a large-scale, diverse dataset
for DDC to narrow the gap from real-world applications. Our
100-Driver includes more than 470K images and is diverse
in terms of driver, vehicle, camera view and class. Compared
to 3MDAD, our 100-driver offers {2×, 5×, 2×, and 1.3×}
more {drivers, vehicles, views, and classes} respectively. A
comparison of different datasets is listed in Table I.

III. THE 100-DRIVER DATASET

In this section, we first present the data generation process
of 100-Driver. Then we detail the dataset statics and analyse
the dataset properties. Last, we introduce four settings for
practical evaluation.

No. Behavior
1 Normal driving
2 Sleeping
3 Yawning
3 Talk with cellphone (left)
4 Talk with cellphone (right)
5 Texting (left)
6 Texting (right)
7 Hair / makeup
8 Looking left
9 Looking right

10 Looking up
12 Looking down
13 Smoking (left)
14 Smoking (right)
15 Smoking (mouth)
16 Drinking / Eating (left)
17 Drinking / Eating (right)
18 Adjusting radio
19 Operating GPS / entertainment system
20 Reaching behind
21 Hands off the steering wheel
22 Talking to passengers

TABLE II: The list of distracted driving behaviors in the 100-Driver
dataset.

A. Dataset Generation

Collection Setting. During data collection, we elaborately
control the diversity of raw data in terms of vehicles (5
vehicles, Mazda 3 axela, Lynk&co 03, Toyota C-HR, Hyundai
X25 and Ankai A6), camera locations (4 Xiaomi-C1 cameras
in front-left, front, front-right, and side-right, as shown in
Figure 4), modalities (RGB and NIR), lighting conditions
(from morning to after noon, from spring to winter, and
different weather conditions), drivers (100 participants), ap-
pearance variations (changing clothes, wearing mask, hat and
sunglasses). The RGB modality is captured in daytime while
the Near Infrared (NIR) modality is collected in nighttime.
To ensure the appearance variations, a part of drivers (25% in
daytime and 15% in nighttime) were recorded over multiple
time periods, leading to huge appearance variations especially
in clothes and lighting (see the last row of the left sub-figure in
Figure 1). During collection, we equip a safety officer giving
relevant instructions according to the road condition. Each
participant is informed the risks involved in data collection
and has signed a GDPR informed consent to allow the data
to be publicly available for research study.
Data Annotation. Following the collection setting, we initially
obtain 79.34 hours of video. The overall annotation process
was conducted by 20 experts. To boost the efficiency of data
annotation, we first grouped the data by drivers. In addition,
we aligned the start and end times for the 4 cameras of the
same driver, so that we could label each pre-defined class
(as listed on Tab. II) for all 4 cameras at once based on the
timestamp. Each individual behavior is labeled with behavior
class, modality type, driver ID, camera ID, vehicle ID and
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scene ID. Given the labeled video clips, we conduct a down
sampling to generate more diverse data considering the high
similarity between adjacent frames. We further remove outliers
with very different content from the labeled class. Note that,
the down sampling and filtering processes lead our 100-Driver
to be much diverse and clean than the previous largest dataset,
3MDAD [23], which builds the data with the video clips
directly. In Table I, we compare the average number of images
of each individual behaviour and the overall data size among
datasets, showing that the large-scale data of 100-Driver is
mainly benefited from collecting more diverse samples instead
of highly similar ones. We finally produce a total of 470,208
samples to form our 100-Driver dataset. An example of the
annotated samples is shown in Figure 3.

B. Dataset Description

Overview. 100-Driver contains 470,208 samples, which are
collected by 4 camera views and belong to RGB and NIR
modalities. It involves 21 types of distracted behaviours and
1 normal behaviour captured from 100 drivers in 5 vehicles.
The detailed classes can be found in Figure 2 (c) and (d).
Data Statics. In Figure 2, we provide the detailed distributions
of 100-Driver. We can make the following conclusions. First,
the number of samples and the number of drivers are roughly
balanced between daytime and nighttime. Specifically, there
are 65 and 52 drivers recorded during daytime and nighttime,
respectively, where 17 drivers participated in both events. In
total, there are 245,266 RGB images captured in daytime and
224,942 NIR samples captured in nighttime. Second, the data
distribution of each vehicle is different. In detail, three vehicles
collect the data in both daytime and nighttime while the other
two only collect the data in daytime or nighttime. Besides,
the “Mazda” and “Lynk&Co” are the two vehicles collected
with the most number of samples where the “Mazda” mainly
focuses on the daytime while the “Lynk&Co” is opposite. This
is because in our original intention, we only considered the
balance between day and night, i.e., the number of samples and
the number of drivers are roughly balanced between daytime
and nighttime. During collection, the available long-term ve-
hicles were Mazda, Hyundai, and Lynk&Co. To increase data

diversity, we temporarily used the other two vehicles (Ankai
and Toyota) and asked new participants to collect the data. This
collection strategy led to a slight unbalance in our data. Third,
the class distributions are relative balanced regarding to both
cameras and modalities. To be specific, the class distributions
are similar between daytime and nighttime. And the number of
samples of the same class is approximate for each camera. The
Yawning class has the smallest number of samples because
the duration of an individual behaviour of this class during
collection is shorter than other classes. Lastly, as shown in
Figure 2 (e), our dataset covers diverse participants in terms
of age group and driving experience.

C. Data Properties

Our 100-Driver gains benefit in two aspects, i.e., scale and
diversity, which are explained bellow.
I: 100-Driver has scale advantage in terms of number of
samples and number of drivers.

• 100-Driver has the largest number of samples. As
shown in Table I, 100-Driver contains 470K images,
which is 1.6× larger than the previous largest dataset,
3MDAD [23].

• 100-Driver has the largest number of drivers. 100-
Driver recorders the samples of 100 drivers, which is
substantially larger than existing datasets that cover fewer
than 50 drivers.

II: 100-Driver has diversity advantage in terms of distracted
class, behaviour style, camera view, vehicle, and person ap-
pearance.

• 100-Driver covers the most comprehensive classes.
100-Driver considers 22 classes (21 distracted classes
and 1 normal driving) while 3MDAD only considers 16
classes (15 distracted classes and 1 normal driving). The
coverage of distraction behaviors is designed according to
the definition of the International Road Transport Union.
Examples of distracted classes and safe driving class are
shown in Figure 5. Specifically, the classes like “look
away” and “leave the steering wheel” are first defined
compared to previous datasets.
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• 100-Driver involves more diverse behaviour styles.
Since peoples have different habits during driving, they
will react differently to each behavior. We invite 100
drivers of different age groups (from 20-60 years old)
during collection, leading the behaviour styles to be more
diverse.

• 100-Driver captures samples with 4 different views.
During collection, four cameras are placed in front-left,
front, front-right and side-right views of the drivers, with
two purposes. First, a multi-camera dataset can help us to
learn models that are more robust to camera variations as
well as enabling us to evaluate the generalization ability
of models to cameras. Second, the multi-camera dataset
provides an opportunity to boost the system performance
by considering the contents captured by multiple cameras.
For example, the front-view camera is good at capturing
the facial details that are important to detect the subtle
activities such as sleep and yawning distractions. The
side-view camera can provide the global view of an
action, which is more suitable to identify the behaviors
with large movements, such as reach behind.

• 100-Driver is collected from different vehicles. In
real-world applications, the monitoring system will be
installed in different vehicles that have very different
in-car scenes. To meet the real-world applications as
much as possible, 100-Driver is comprised of 5 vehicles,
including 2 sedans, 2 SUVs, and 1 van. To our best
knowledge, 100-Driver is the first dataset that considers
the diversity of vehicle.

• 100-Driver includes various person appearance vari-
ations. In our dataset, three factors lead to large person
appearance variations. First, the data are collected un-
der different weather conditions (sunny, rainy), periods
(morning, noon, afternoon) and seasons (summer and
winter). This leads to lighting and clothes variations. Sec-
ond, some participants are asked to change their clothes,
wearing masks, sunglasses, and hats, further enlarging the
appearance variations. Third, more drivers also lead to
clothes variations since the clothes wearing by different
drivers are very different.

In summary, 100-Driver is a large-scale, diverse dataset that
explicitly considers the important factors in the real-world
applications. This enables us to study more practical problems
in DDC as presented in the next section.

D. Evaluation Protocol

In previous datasets, they generally assume that the training
and testing sets have the same distribution. That is, the training
and testing sets are collected under the same environments,
including camera views, vehicles and modalities. However,
in real-world applications, the deployed environments vary
significantly. Therefore, the trained model inevitably needs to
evaluate the data collected from environments that are very
different from the training ones. Considering the above fact,
the traditional setting ignoring the domain bias is not always
practical, and it is essential to evaluate settings that consider
the variations caused by changes of camera views, vehicles

TABLE III: Description of different settings. i, j: refers to driver IDs.
c: camera ID. t: refers to vehicle type. m: refers to vehicle ID.

Setting Train Test
Traditional Driver1,...,Driveri Driveri+1,...Driverj ,
Cross-view Day-Camc Day-Cam{NOT c}

Cross-modality Day-Camc Night-Camc

Cross-vehicle Day-Vehicle{t} Day-Vehicle{NOT t}
Day-Vehicle{m} Day-Vehicle{NOT m}

and modalities. However, as discussed before, existing datasets
commonly are collected under a single environment (e.g., with
1 camera, 1 vehicle and 1 modality) and thus can not be used
to evaluate the challenging settings with domain bias. Thanks
to the high diversity of our 100-Driver, we are able to achieve
this goal and thus introduce four settings to narrow the gap
from the practical deploying scenarios.

• Traditional Setting. In this setting, the training and
testing sets are captured from the same camera views,
modalities and vehicles. The domain bias between train-
ing and testing sets is very small.

• Cross-camera Setting. In this setting, the training and
testing sets are collected from different cameras while
the modalities and vehicles are the same. The domain
bias is mainly caused by the camera variations.

• Cross-modality Setting. Similar to cross-camera setting,
in this setting, the training and testing sets are collected
from different modalities while the camera views and
vehicles are the same. The domain bias is mainly caused
by the modality difference.

• Cross-vehicle Setting. Cross-vehicle setting includes
cross-vehicle-type and cross-individual-vehicle settings.
The training and testing sets are collected from different
vehicle models and different vehicles for cross-vehicle-
type and cross-individual-vehicle, respectively. And the
camera views and modalities are the same for both cross-
vehicle-type and cross-individual-vehicle. The domain
bias is mainly raised by vehicle type and vehicle changes.

IV. EXPERIMENTS

In this section, we conduct extensive experiments on the
proposed 100-Driver dataset.

A. Experimental Setting

Baseline. Since Distracted driver classification (DDC) is a
classification problem, we use the cross-entropy loss to train
the model and regard this approach as the baseline.
Backbones. We select 6 popular networks as the back-
bones, including ResNet-50 [44], MobileNetV3-large [45],
ShuffleNetV2-1-0 [46], SqueezeNet1-0 [47], EfficientNet-
B0 [48], and GhostNet-1.0 [49]. Note that, in this paper,
we do not aim to compare the performance of different
backbones. Instead, we hope to find common phenomena that
are important to DDC.
Evaluation. We evaluate the baseline method on the 4 settings
introduced in Section III-D. For traditional setting, we split
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Fig. 6: The confusion matrix of EfficientB0 on four cameras. And the best view is in zoom.

TABLE IV: The results of the traditional setting. D and N indicate day and night, respectively. The number following D and N indicates
the camera ID, where “ALL” represents all cameras. Acc, Pre and Rec represent Accuracy (%), Precision (%) and Recall (%), respectively

Model D-All D1 D2 D3 D4 N-All N1 N2 N3 N4
Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec

Resnet50 73.9 74.4 72.7 71.5 72.8 70.7 68.0 70.6 65.7 69.9 71.9 67.8 77.3 80.3 75.7 74.3 74.3 73.5 66.3 64.7 57.4 55.7 51.5 40.4 53.3 54.7 47.5 74.1 73.8 69.5
MobileNetV3 76.4 77.0 75.5 74.1 72.9 74.0 71.7 69.6 69.8 76.0 74.8 75.0 77.2 76.5 76.7 71.4 71.3 70.7 70.1 72.2 70.6 67.9 68.3 66.1 67.0 65.1 65.3 75.1 78.1 74.3
ShuffleNetV2 74.4 74.5 73.3 70.0 69.8 69.0 64.6 63.3 63.4 67.0 66.3 67.2 74.7 72.7 74.3 69.9 70.7 68.8 74.8 76.2 74.7 62.5 63.1 59.3 64.4 65.8 62.7 72.6 75.1 71.8
SqueezeNet 72.3 72.0 71.6 75.0 73.6 73.9 72.3 72.4 70.1 79.6 78.5 79.2 82.5 80.4 82.2 70.5 73.2 69.4 75.2 74.9 74.7 65.9 67.1 63.7 66.7 68.6 66.3 77.1 77.2 76.9

EfficientNetB0 79.0 79.2 78.1 79.8 79.6 78.9 72.3 72.2 72.5 77.2 75.3 77.4 78.6 78.9 78.0 74.1 74.6 73.7 72.3 73.2 71.9 67.9 68.0 65.4 64.6 65.6 63.2 74.6 75.5 73.2
GhostNetV1 72.3 72.4 71.2 70.7 70.2 70.2 68.4 65.7 66.1 72.9 71.0 71.9 75.2 77.0 74.7 66.4 65.8 65.5 69.8 72.1 71.0 61.8 57.6 58.1 63.5 64.0 61.1 72.2 77.5 71.7
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Fig. 7: The accuracy on each class. For each class, we compute the
mean and standard deviation of the accuracy of all the models. And
the best view is in zoom.

the data by driver, where {47, 6, 12} and {37, 5, 10} drivers
are divided into {train, val and test} sets for daytime and
nighttime, respectively. For cross-camera setting, we use the
data of one camera to train the model and use it to evaluate the
testing data of other cameras. For cross-modality setting, we
adopt the data of one modality to train the model and use it to
evaluate the testing data of another modality. For cross-vehicle
setting, we split the data by vehicles, where the training sets
for day are comprised of the data recorded in Mazda. The data
in Mazda are divided by driver where {33, 5} drivers are for
training and testing. The data collected by {Hyundai, Ankai,
Lynk&Co} in are for testing. For all settings, we select the
model that achieves the best accuracy on the validation set
and report the accuracy on the testing set.

Implementation Details. For baseline models, we adopt SGD
optimizer with a momentum of 0.9 and a weight decay of 5×
10−4. The batch size is set to 64. All backbones are pretrained
with ImageNet [50]. The learning rate is initialized to 0.01
and reduced by a factor of 10 at 40 and 60 epochs. The inputs
are resized to 224 × 224. We use random crop and random

Image from Cam1

Image from Cam4

Resnet50!"

Prediction

Prediction

Drive Safe
Sleep

Yawning
…
…

Talk Right
…

Make Up
…
…
…
…

Reach Behind 

Prediction

Resnet50!#

Fig. 8: A simplified two-camera fusion framework. Resnet50Di

denotes the model trained on Camera i.

erasing [51] for data augmentation. The overall training epoch
is 100.

B. Results on Traditional Setting

We first evaluate the traditional setting with different back-
bones in Table IV. We find that, the models commonly have
higher accuracies when training and testing on Camera 1
(front-left) or Camera 4 (side-right), regardless of the back-
bone and modality. We also provide the results of precision
and recall and find a similar phenomenon as the accuracy
metric. This indicates that, in real-world applications, we
can suggest/enforce the drivers to install the cameras at the
front-left and side-right. We also find that, with the same
camera and backbone, the model generally achieves higher
accuracies on daytime. This phenomenon is reasonable since
the poor lighting in nighttime will increases the difficulty of
recognition.

To further investigate the challenges of 100-Driver, we take
a closer look at the accuracy of each class in Fig. 7 and
the confusion matrix in Fig. 6. We can make the following
observations. First, the accuracies are imbalanced for different
classes, indicating that the difficulties of each class are not con-
sistent. For instance, the classes “sleeping”(#2), “hair / make
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TABLE V: Accuracy (%) of multi-camera fusion on daytime. D indicates day. The number following D indicates the camera ID. The figures
in brackets indicate how much the accuracy of n-camera combination increases or decreases compared to the best result of individual or
n− 1 combined set where ↑ and ↓ represent increase and decrease, respectively.

Model D1 & D2 D1 & D3 D1 & D4 D2 & D3 D2 & D4 D3 & D4 D1&D2&D3 D1&D2&D4 D1&D3&D4 D2&D3&D4 D1&D2&D3&D4
ResNet50 73.8 (↑2.3) 74.7 (↑3.2) 82.5 (↑5.2) 72.8 (↑2.9) 78.7 (↑1.4) 80.8 (↑3.5) 76.8 (↑2.1) 82.5 (↑0) 83.3 (↑0.8) 83.0 (↑2.2) 84.4 (↑1.1)

MobileNetV3 77.1 (↑3.0) 81.9 (↑5.9) 83.8 (↑6.6) 77.9 (↑1.9) 82.6 (↑5.4) 82.2 (↑5.0) 83.5 (↑1.6) 86.1 (↑2.3) 84.8 (↑1.0) 84.6 (↑2.0) 86.9 (↑0.8)

ShuffleNetV2 73.2 (↑3.2) 75.1 (↑5.1) 79.9 (↑5.2) 72.2 (↑5.2) 76.1 (↑1.4) 76.7 (↑2.0) 77.2 (↑2.1) 78.4 (↓1.5) 79.7 (↓0.2) 77.8 (↑1.1) 80.0 (↑0.3)

SqueezeNet 82.1 (↑7.1) 80.4 (↑0.8) 86.2 (↑3.7) 83.6 (↑4.0) 85.2 (↑2.7) 86.2 (↑3.7) 82.9 (↓0.7) 84.9 (↓1.3) 86.5 (↑0.3) 84.7 (↓1.5) 83.5 (↓3.0)

EfficientNetB0 81.7 (↑1.9) 83.6 (↑3.8) 87.9 (↑8.1) 80.0 (↑2.8) 83.2 (↑4.6) 82.9 (↑4.3) 84.8 (↑1.2) 87.8 (↓0.1) 86.8 (↓1.1) 84.5 (↑1.3) 86.9 (↓0.9)

GhostNetV1 74.8 (↑4.1) 78.0 (↑5.1) 83.7 (↑8.5) 75.8 (↑2.9) 80.1 (↑4.9) 82.4 (↑7.2) 82.1 (↑4.1) 85.1 (↑1.4) 85.0 (↑1.3) 83.6 (↑1.2) 86.2 (↑1.1)

Computation Cost 2× 3× 4×

TABLE VI: Accuracy (%) of cross-view setting on daytime. D indicates day. The number following D indicates the camera ID.

Model D1→ D2 D1→ D3 D1→ D4 D2→ D1 D2→ D3 D2→ D4 D3→ D1 D3→ D2 D3→ D4 D4→ D1 D4→ D2 D4→ D3
ResNet50 50.1 18.4 6.1 11.2 30.4 6.1 15.6 31.4 13.1 5.4 4.1 15.0

MobileNetV3 48.7 15.0 4.0 16.6 32.1 2.8 12.9 25.3 9.1 4.2 3.5 9.6
ShuffleNetV2 44.1 14.7 5.8 18.9 21.9 5.3 7.8 26.8 8.8 3.7 3.4 8.5
SqueezeNet 52.1 19.6 5.8 31.3 38.3 5.4 14.1 31.8 11.7 4.9 5.2 11.1

EfficientNetB0 51.3 17.3 5.0 20.7 27.8 4.0 10.4 28.3 9.0 5.7 3.8 9.1
GhostNetV1 48.0 13.1 6.8 20.5 24.1 4.5 12.6 25.3 11.8 3.5 4.0 8.9

up ”(#7), “looking up” (#10) and “talking to passengers”(# 22)
are the most difficult behaviors, regardless of the cameras and
models. Therefore, the future studies may consider using data
re-sampling [52] or class re-weighting [53], [54] techniques to
improve the overall performance. Second, different cameras
are good at capturing different distractions. For example,
Camera 1 shows the superiority in identifying the “yawning”
(#3) activity while Camera 3 and Camera 4 perform poorly
in recognizing such class. Camera 4 can well classify the
“operating GPS / entertainment system”(#19) whereas the
other three cameras can hardly distinguish such distractions.
This phenomenon indicates that one can use a multi-camera
fusion strategy to take the advantages of cameras installed at
different views. For example, during the fusion of predictions
produced by multiple cameras, the weights of each class will
be set according to the superiority of each camera. Third, the
accuracy of “normal driving” (#1) is not satisfied (lower than
90% in all cases). This is very dangerous in practical since
recognizing distracting behaviors as normal driving should
be more worried than classifying them into wrong distracted
behaviors. Therefore, the researchers should take into account
this weakness seriously.

Multi-camera Fusion: To study the trade-off between
accuracy and computational cost in the multi-camera fusion
approach, we propose a simplified framework to fuse multiple
cameras by averaging the prediction of each camera. An
example of a two-camera fusion framework is illustrated in
Figure 8. The experimental results are listed in Table V. And
we obtain several observations as follows. First, two-camera
fusion can consistently boost the performance regardless of the
backbone model, especially on the combination of Camera 1
and Camera 4 which can achieve the best performance in most
cases. We conjecture this is because the data captured from
Camera 1 and Camera 4 can be better complementary. Second,
the three-camera, as well as four-camera fusion methods, can
obtain limited improvement or even cause a performance drop.
For example, the combination of Camera 1, Camera 2, and
Camera 4 can damage the performance in half cases. This may
be because the introduction of Camera 2 can destroy the effect

of the fusion of Camera 1 and Camera 4 which have a good
complementary relationship. Third, the computational cost and
parameter size grows linearly with the number of cameras.
Therefore, to better trade the accuracy and the complexity, we
suggest combining the information from Camera 1 and Camera
4. And two directions can be further studied to reduce the
computational cost. (a) It would be more effective to design
some parameter-sharing models for multi-camera inputs. (b)
An alternative way is to design a parallel computing solution
from the hardware level.

Research Findings.
• Different camera locations produce different results

where Camera 1 and Camera 4 perform better.
• The difficulties of each class are not consistent,

where “Normal driving”, “Sleep”, “Smooking” are
harder than other classes.

• Two-camera fusion can boost performance.
• Three-camera and four-camera fusion obtain lim-

ited improvements.
Suggestions for Deployment.

• Preferentially installs the cameras at the front-left
and side-right locations.

• To achieve higher accuracy, consider jointly en-
abling two views for recognition.

Future Directions.
• Improve the performance in recognizing hard

classes, especially the “Normal driving”.
• Effectively explore the mutual benefit of different

views to obtain more robust results.

C. Results on Cross-Domain Settings

We then conduct experiments under the cross-camera, cross-
modality and cross-vehicle settings. We use the ResNet-50
as the backbone. The results of different baseline models are
shown in Table VI, Table VIII, and Table IX.
Cross-camera setting. Table VI shows the results of cross-
camera setting on the daytime. We can find that the results of
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TABLE VII: Accuracy (%) of cross-vehicle setting. D indicates day. The number following D indicates the camera ID. Se represents Sedan.

Model D1 D2 D3 D4
Se→Se Se→SUV Se→Van Se→Se Se→SUV Se→Van Se→Se Se→SUV Se→Van Se→Se Se→SUV Se→Van

ResNet50 55.6 36.2 5.2 62.4 28.5 1.5 60.4 25.4 7.9 73.2 42.3 8.0
MobileNetV3 56.0 34.1 7.4 63.0 30.7 32.5 59.7 23.9 4.8 68.1 36.7 0.8
ShuffleNetV2 51.1 28.6 4.6 56.7 24.2 1.3 52.8 28.8 5.0 65.0 38.3 6.0
SqueezeNet 57.6 36.1 5.4 67.5 31.3 19.1 66.0 38.4 24.1 72.1 36.4 25.9

EfficientNetB0 57.7 34.1 4.1 63.2 30.3 15.9 65.6 28.1 19.4 71.5 42.5 11.3
GhostNetV1 55.4 31.7 2.1 56.7 29.5 9.3 60.7 27.3 11.8 65.6 38.9 0.25

TABLE VIII: Accuracy (%) of cross-vehicle setting. D indicates day. The number following D indicates the camera ID. {M, H, A, L}
represent {Mazda, Hyundai, Ankai, Lynk&Co }.

Model D1 D2 D3 D4
M→M M→H M→A M→L M→M M→H M→A M→L M→M M→H M→A M→L M→M M→H M→A M→L

ResNet50 54.9 27.7 12.3 29.6 60.5 22.8 0.8 32.6 61.9 18.9 4.1 29.8 73.9 32.5 16.8 34.0
MobileNetV3 55.1 26.7 11.0 25.9 67.8 24.1 26.3 32.9 55.1 21.1 14.5 26.1 61.9 31.4 4.8 32.5
ShuffleNetV2 53.0 30.2 2.1 29.3 61.6 19.5 0.3 28.6 55.5 24.8 18.3 27.3 69.0 31.7 10.3 31.8
SqueezeNet 59.7 33.4 7.3 35.1 64.6 26.0 9.5 39.8 62.2 34.5 25.6 33.6 72.0 42.0 25.6 38.4

EfficientNetB0 65.0 29.2 1.3 32.2 68.6 26.9 30.3 36.0 64.7 29.7 11.8 34.0 76.4 38.9 11.5 39.1
GhostNetV1 60.7 31.5 8.2 31.3 64.2 23.1 16.1 33.8 55.7 18.8 11.9 28.6 68.2 32.5 11.0 34.7

each view is largely lower than that of the traditional setting.
For example, when using ResNet-50 as the backbone, the
model trained on the data of Camera 2 produces 68% accuracy
on the testing set of Camera 2. However, the testing result is
reduced to 50% when using the model trained on the data of
Camera 1. These results indicate that the models significantly
suffer from the variations caused by camera changes. The
transfer performance is closely related to the angle difference
between the two cameras. For instance, the transfer result of
the model trained on the data of Camera 1 is successively
decreased from Camera 2 to 41. These results also suggest
that we can leverage the data of internal cameras to bridge the
gap between two cameras that have a large angle difference.
Cross-vehicle setting. We first list the results of cross-vehicle-
type setting (e.g., Sedan →SUV) on Table VII. It can be
observed that the accuracy is decreased dramatically when
changing the type of vehicle. This suggests that we should take
into account the vehicle type in the model designing. To be
specific, the decline from Sedan to Van is more serious than to
SUV. We conjecture this is because the sedan and SUV share
similar interior structure resulting in more similar data distri-
bution. Therefore, to further investigate the influence of the
interior structure of the vehicles, we design cross-individual-
vehicle setting (e.g., Mazda →Lynk&Co) due to the interior
structure may vary greatly even for the same type of vehicle.
Results of cross-individual-vehicle are shown in Table VIII.

We can observe that the cross-individual-vehicle accuracies
are consistently decreased compared to that of training and
testing with the data from all vehicles. This indicates that the
individual vehicle changes will also deteriorate the accuracy
even using the same camera and that we should consider
the vehicle variations during training. One possible solution
could be training robust models with domain generalization
or domain adaptation methods.
Cross-modality setting. Since collecting daytime data is much
easier than nighttime data, it is more suitable to study the

1The greater the difference between the ID numbers of the two cameras,
the greater the angle difference between them.

TABLE IX: Accuracy (%) of cross-modality setting.D and N indicate
day and night, respectively. The number following D and N indicates
the camera ID.

Model D1→ N1 D2→ N2 D3→ N3 D4→ N4
ResNet50 16.7 19.2 12.5 33.4

MobileNetV3 21.0 21.7 12.0 14.9
ShuffleNetV2 5.1 4.8 9.0 3.7
SqueezeNet 17.1 7.1 6.0 16.4

EfficientNetB0 13.0 7.9 9.9 21.3
GhostNetV1 12.8 6.3 3.7 5.0

TABLE X: Accuracy (%) of cross-modality domain adaptation.D and
N indicate day and night, respectively. The number following D and
N indicates the camera ID

Model D1→ N1 D2→ N2 D3→ N3 D4→ N4
Source-only 16.7 19.2 12.5 33.4
DANN [55] 41.9 34.3 37.0 56.3

D-Coral [56] 38.7 40.0 38.3 56.2
BNM [57] 45.8 40.7 28.2 47.0

CDAN [58] 61.5 51.0 57.4 70.5
DSAN [59] 56.1 55.5 55.4 73.7
Supervised 66.3 55.7 53.3 74.1

transfer direction from daytime to nighttime. In Tab. IX, we
report the results of cross-modality setting from daytime to
nighttime. Clearly, all the models produce very poor results
when testing on the nighttime data. This is due to the large data
bias between the two modalities. In real-world applications, it
is more dangerous when driving in nighttime. Therefore, it
is essential to solve the cross-modality problem in DDC. We
next give an effective solution to address this problem in the
view of domain adaptation.
Cross-modality domain adaptation. Domain adaptation is an
effective way to address the problem of domain shift. Since
different cameras, modalities, vehicles can refer to domains,
we can use domain adaptation to improve the performance of
cross-camera, cross-modality and cross-vehicle problems. In
this paper, we choose the cross-modality as an example and
evaluate 5 popular domain adaptation methods2 on it, includ-

2We adopt the source code released by [60] to implement domain adaptation
experiments



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, MARCH 2022 10

ing DANN [55], D-Coral [56], BNM [57], CDAN [58] and
DSAN [59]. When using domain adaptation methods, we addi-
tionally utilize unlabeled target data for training. Here, source
and target data belong to different modalities. The source-
only model is trained with the labeled source data while the
supervised model is trained with labeled target data. Results
reported in Table X show that domain adaptation methods can
significantly improve the cross-modality accuracy. Specifically,
CDAN and DSAN achieve the best adaptation results. It is
interesting that these two methods can produce slightly lower
or even higher results than supervised models. This indicates
that the knowledge of labeled daytime data can well be
transferred to the nighttime data with a proper method and that
the daytime data can be used to improve the performance on
the nighttime modality. Therefore, in real-world application,
we can collect labeled daytime data and unlabeled nighttime
data, and utilize effective domain adaptations methods to learn
models that are robust to nighttime scenes. Considering the
difficulty of annotating nighttime data, cross-modality domain
adaptation can help us achieve modality-robust model while
saving labeling costs. The other two settings, i.e., cross-camera
and cross-vehicle, can also use domain adaptation techniques
to achieve more robust models.

Research Findings.
• Camera location, individual vehicle, vehicle type,

and data modality variations will deteriorate the
accuracy.

• The transfer result of the model trained on Camera
1 is successively decreased from Camera 2 to 4.

• Domain adaptation methods can improve cross-
modality accuracy.

Future Directions.
• Utilize the data of internal cameras to bridge the

gap between two cameras that have a large angle
difference.

• Study the domain generalization or domain adap-
tation methods for cross-domain settings in DDC.

V. CONCLUSION

In this paper, we introduce a new dataset, named 100-
Driver, for Distracted driver classification (DDC). 100-Driver
is the largest DDC dataset to date and is diversity in multiple
important aspects. The significant properties of our dataset
enable us to study 3 practical problems on 100-Driver, i.e.,
cross-camera, cross-modality and cross-vehicle settings that
are largely overlooked in DDC as well as to explore the
collaboration of multiple cameras for improving recognition
accuracy. Extensive experiments conducted on 100-Driver
reveal the new challenges and valuable insights/instructions
to the DDC community. We hope our dataset can inspire the
researchers to consider more challenges but realistic problems
in DDC, pushing forward the development of safe driving
monitoring system.
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